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10.1 Abstract 

One of the most important and obvious forces shaping organismal traits is 
predation. Prey have evolved diverse means of enhancing the probability 
of survival in the face of predation, and these means fall into two classes of 
antipredator strategies: (1) avoidance of predatory encounters, and (2) 
escaping after encountering a predator. A range of antipredator defenses—
including behavioral, morphological, physiological, and chemical 
defenses—serve to either reduce the probability of detection by a predator 
or enhance the probability of surviving after detection by a predator. 
However, the recognition that reproductive strategies (e.g. offspring 
number, reproductive lifespan) are typically strongly influenced by 
mortality regimes induced by predators, highlights that most but not all 
“antipredator traits” fall into one of these two categories—that is, some life 
history traits influence only fecundity, not survival. Life history evolution 
has not traditionally been included in reviews of antipredator adaptations, 
however this chapter reveals that the conceptual link between life histories 
and predation broadens and refines our understanding of predation’s role 
in phenotype evolution. 

While ecologists have long recognized the importance of predation in 
population- and community-level dynamics, a varied history exists for the 
study of predation’s role in influencing evolutionary change. Despite the 
wealth of antipredator adaptations present in organisms, research 
investigating the significance of predation in biological evolution has 
received considerably less attention than other ecological factors (e.g. 
competition, mate attraction). However, predation can generate divergent 
selection among prey populations in several different ways, and is 
predicted to represent a major source of evolutionary change. Recent 
empirical work supports this claim. This chapter reviews the varied forms 
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of evolutionary strategies prey have evolved to mitigate malicious attempts 
of natural predators, and the potential importance of predators in driving 
phenotypic divergence and speciation. 

Keywords: Antipredator adaptations, divergent natural selection, fitness 
tradeoffs, life history evolution, phenotypic plasticity, predator-prey 
interactions, reproductive isolation, speciation. 

10.2 Introduction 

This chapter primarily examines classical predation in animals (i.e. 
consumption of one animal by another), however predation can be broadly 
defined to include all transfers of energy from one organism to another, 
including herbivores, parasites, parasitoids, and pathogens. To illustrate 
the generality of several concepts, examples will be provided from this 
more general definition of predation. Rather than offer an extensive review 
of antipredator strategies, this chapter highlights conceptual points meant 
to enhance our investigation and understanding of the role of predation in 
the evolution of prey traits. 

The transfer of energy among organisms has long received considerable 
attention from ecologists (e.g. Elton 1927; Lindeman 1942; Huffaker 1958; 
Holling 1959; Paine 1966; Addicott 1974; Pimm 1982; Kerfoot and Sih 
1987; Lima and Dill 1990; Polis and Winemiller 1996; de Ruiter et al. 
2005). The importance of consumptive interactions in the distribution and 
abundance of organisms can be easily observed by a cursory glimpse of 
some important ecological concepts and terms: keystone predation, food 
web ecology, food-chain length, top-down effects, trophic cascade. While 
ecological consequences of predation have been firmly established, 
research into the role of predation in driving evolutionary change has 
lagged far behind studies centering on other ecological factors, such as 
resource competition (reviewed in Vamosi 2005). This is puzzling 
considering the vast array of antipredator adaptations present in extinct and 
extant organisms, the early attention predation received in the developing 
field of evolutionary biology (e.g. Müller 1879; Wallace 1879; Poulton 
1890; Beddard 1892; Thayer 1896), and the repeated propositions that 
predation was likely a significant force of evolutionary change in need of 
more focused attention (e.g. Cott 1940; Worthington 1940; Fryer 1959; 
Askew 1961; Ehrlich and Raven 1964; McPhail 1969; Stanley 1979; 
Vermeij 1987; Schluter 2000). For more than a century, most 
evolutionarily oriented research investigating predation either examined 
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fossil evidence—where predation has long enjoyed substantial respect as a 
driving force of evolutionary change (e.g. see chapters 2-3, 7-9, 13-15)—
or examined color patterns (i.e. crypsis, aposematism, mimicry) (see 
references in Komárek 1998; Ruxton et al. 2004). Outside of these two 
areas, evolutionary studies of predation have been comparatively minimal 
until a renewed focus began to emerge in the mid-1970s (e.g. Farr 1975; 
Gilbert 1975; Ricklefs and O’Rourke 1975; Holt 1977; Harvey and 
Greenwood 1978; Reznick and Endler 1982; reviewed in Vamosi 2005). 

Fig. 1. Numbers of papers published in the general fields of ecology, evolution, 
and speciation involving the subjects of competition (black bars) and predation 
(grey bars). Data are from a search of the Institute for Scientific Information 
Science Citation Index conducted in March 2006. Searches included the following 
terms for each field of inquiry and subjects: Ecology = ecology, ecological, food 
web, population dynamic*, species distribution*, species abundance*, population 
distribution*, population abundance*; Evolution = evolution, evolutionary, 
diversification, divergence, differentiation; Speciation = speciation, reproductive 
isolation, reproductive isolating, sexual isolation, sexual isolating; Competition = 
competition (excluding the terms predation and predator), Predation = predation, 
predator (excluding the term competition). Results are similar if “herbivory,” 
“herbivore,” and “herbivores” are included in the search for Predation, if the term 
"food web" is excluded from the search for Ecology, and if searches for one 
subject are not exclusive of the other factor (i.e. if the term "competition" were 
allowed in searches involving “predation” and vice versa) 

To illustrate the disparity in the academic attention received by 
competition and predation among ecologically and evolutionarily oriented 
studies, I conducted a literature search compiling the number of recently 
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published scientific articles involving either predation or competition in 
the general fields of ecology, evolution, and speciation. While predation 
receives considerable attention in ecological studies, it is clearly 
overshadowed by competition in evolutionary studies (Fig. 1). 

During the temporal span of the search, the numbers of papers of a 
primarily ecological nature involving these two subjects is relatively 
similar ( 25% more papers involving predation than those on 
competition); however, studies involving competition far outnumber 
studies involving predation for papers investigating evolution (more than 
twice as many) or speciation (more than 5 times as many). Thus, while it is 
widely recognized that predation is among the most important ecological 
factors structuring natural communities (e.g. Paine 1966; Addicott 1974; 
Jeffries and Lawton 1984; Kerfoot and Sih 1987; Holt and Lawton 1994; 
Wellborn et al. 1996; Jackson et al. 2001; Shurin and Allen 2001; Almany 
and Webster 2004), its potentially important role in phenotypic divergence, 
speciation, and diversification rates has only recently attracted significant 
attention (e.g. Reimchen 1994; Endler 1995; McPeek et al. 1996; Reznick 
et al. 1997; Blackledge et al. 2003; Langerhans et al. 2004; Nosil 2004; 
Vamosi and Schluter 2004; Vamosi 2005; Nosil and Crespi 2006b). 
Surprisingly, the extension of predation’s importance in the distribution 
and abundance of species to its consequences for the distribution and 
abundance of phenotypes within and among species has been relatively 
slow in development. This chapter is meant to illustrate that when 
antipredator traits are reviewed with a broad, evolutionary perspective, the 
evidence overwhelmingly points to predation as a major force of 
evolutionary divergence across a wide range of phenotypes, and its role in 
speciation particularly demands future investigation. 

10.3 Solving the problem of being eaten: avoidance and 
escape

Predation is a fundamental and pervasive component of ecosystems. 
Virtually every organism is perceived as a potential prey by some other 
organism. Obviously, an organism has little chance of reproducing and 
proliferating its lineage if it is severely injured or consumed by predators. 
Thus, selection has presumably strongly favored prey traits that increase 
the probability of survival and reproduction amidst predators. For the 
purposes of this chapter, “antipredator traits” are traits that predator-
mediated natural selection has played a role in shaping, although they may 
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have a different function in some current populations and may be 
influenced by other factors as well. 

Previous authors have described various conceptual frameworks for 
understanding antipredator traits (e.g. Edmunds 1974; Vermeij 1982; Sih 
1987; Lima and Dill 1990; Endler 1991; Caro 2005). I believe the most 
natural approach perceives predator-prey interactions from a prey’s 
perspective, and categorizes antipredator traits based on the manner in 
which the traits influence prey fitness (i.e. individual viability, offspring 
viability, individual fecundity) and the chronological sequence of the 
possible components of predatory encounters—from pre-detection through 
recognition, attack, capture, and consumption (Table 1). Antipredator traits 
are highly diverse, spanning behavior, morphology, physiology, chemistry, 
and life history (reviewed in Edmunds 1974; Janzen 1981; Kerfoot and Sih 
1987; Vermeij 1987; Greene 1988; Caro 2005). The approach taken in this 
chapter builds upon those of Sih (1987), Endler (1991), and Caro (2005), 
in an attempt to provide a more unified framework for understanding all 
possible types of antipredator traits. 

To enhance survivorship in the face of predation, prey have evolved two 
types of strategies: (1) avoidance of predatory encounters, and (2) escaping 
after encountering a predator. Predator avoidance is defined as a reduction 
in the probability of detection by a predator. Predator escape is defined as 
a reduction in the probability of consumption after detection by a predator. 
Prey have evolved an astounding arsenal of defenses to avoid and escape 
predation (see Table 1). Importantly, antipredator traits do not necessarily 
enhance individual survivorship with predators, but might rather influence 
offspring survivorship or individual fecundity. Prey generally exhibit 
numerous antipredator traits, and as Table 1 illustrates, traits can influence 
both avoidance and escape, as well as affect different aspects of fitness. 
Further, traits can impact other traits through various means (e.g. 
physiological, architectonical), and trait correlations might take on a 
number of different forms (e.g. codependence: where one trait is 
determined by another; complementation: where specific combinations of 
trait values are required to achieve a particular function; see DeWitt et al. 
1999; DeWitt and Langerhans 2003). Prey can additionally employ 
different traits in different ecological contexts and at different 
developmental stages. For example, different antipredator strategies might 
be utilized during different life stages or ages (e.g. employ crypsis when in 
larval form, rapid retreat when adult). Thus, effects of predation on 
phenotype evolution can be quite complex.
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Table 1. Framework for understanding antipredator traits based on the manner in 
which traits directly influence prey fitness and the chronological stage of the 
predatory encounter in which they are employed. All prey traits are discussed in 
the text. Acronyms are as follows, ASF: avoiding a predator’s sensory field, DSF: 
avoiding detection within a predator’s sensory field, ATD: attack deterrence, 
CPD: capture deterrence, CND: consumption deterrence, Y: yes 

The most important aspect of complexity involving antipredator traits is 
their likelihood of exhibiting tradeoffs with other aspects of performance. 
That is, their utility in defense against one predator might come at the 
detriment of defense against another predator, or the production of 
offspring, or the ability to acquire resources or mates. Such tradeoffs 
should generate divergent selection across environments differing in 
predator regime, and thus should be important in evolutionary divergence 
(see 10.7). 

10.4 Predator avoidance: winning without a fight 

Prey have evolved numerous means of reducing the probability of 
detection by a predator (see Table 1). These means can be divided into two 
categories: 1) avoiding a predator’s sensory field, or 2) avoiding detection 

How the Antipredator Trait Directly Enhances Fitness

Increase Individual Survivorship Increase Offspring Survivorship
Prey Trait Avoidance Escape Avoidance Escape Increase Individual Fecundity

Activity level ASF

Crypsis DSF

Development time ASF

Use predator-free habitat ASF

Active defense CPD, CND

Aposematism ATD

Attack diversion CPD

Autotomy CPD

Chemical defense ATD, CPD, CND

Death feigning ATD

Deimatic behavior ATD, CPD

Mimicry ATD

Protective morphologies ATD, CPD, CND

Rapid retreat, protean behavior CPD

Grouping ASF, DSF ATD, CPD, CND

Use protective habitat ASF, DSF ATD, CPD, CND

Vigilance ASF, DSF ATD, CPD, CND

Reproductive timing ASF, DSF ATD, CPD, CND Y

Reproductive effort:

  -Offspring size ASF, DSF ATD, CPD, CND

  -Parental care ASF, DSF ATD, CPD, CND

  -Offspring number ASF, DSF ATD, CPD, CND Y

  -Frequency of offspring production Y

  -Reproductive lifespan Y
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within the predator’s sensory field. Prey remove themselves (and their 
offspring, see 10.6) from a predator’s sensory field primarily by using 
habitat with decreased probability of predator presence, by reducing their 
activity level, and by reducing time spent in vulnerable life stages. Prey 
avoid detection within a predator’s sensory field primarily through crypsis. 

10.4.1 Steering clear of a predator’s realm: avoiding a 
predator’s sensory field 

Many organisms have evolved means of avoiding contact with predators 
through their habitat use. Some prey live their entire lives, or spend much 
of their time, in holes, fissures, crevices, and other sheltered refugia 
(termed anachoresis). Others use ephemeral habitats that are too temporary 
in nature or too frequently disturbed to be available to predators, while 
others use stressful habitats that are too physically severe to allow 
persistence of predators (e.g. Edmunds 1974; Sih 1987). Prey might use 
these low-predation habitats exclusively, or might exhibit temporal habitat 
shifts, thus remaining active, but in different habitats at different times. 
Utilizing low-predation environments reduces the probability of a prey 
entering a predator’s sensory field, however the use of more general 
protective habitats might also influence other aspects of predator 
avoidance and escape (see 10.5.4). 

A common antipredator response of many animals is reduced activity 
level, where probability of detection is reduced by limiting activity to 
relatively safe situations and/or minimizing time available for detection. 
For instance, many organisms restrict activity to particular times of the day 
(e.g. nocturnal and crepuscular activity) or seasons (e.g. diapause, 
dormancy, cyst formation) (reviewed in Stein 1979; Hairston 1987; 
Stemberger and Gilbert 1987).  

Timing of developmental schedules is an important, but 
underappreciated form of predator avoidance. Some organisms exhibit 
rapid growth during vulnerable life stages to quickly reach a less 
vulnerable stage, or inhibit growth into a vulnerable stage until a relatively 
safe time period (Williams 1966; Istock 1967; Wilbur 1980; Roff 1992). 
To date, most empirical research on this topic has centered on the 
influence of predation on the timing of hatching and metamorphosis in 
amphibians (e.g. Werner 1986; Sih and Moore 1993; Warkentin 1995; 
Chivers et al. 2001; Saenz et al. 2003; Vonesh 2005). A related, but 
distinct, topic is reproductive timing, which describes schedules of 
reproductive events (rather than growth rates or life-stage changes) and 
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primarily affects aspects of fitness other than individual viability. That 
topic is discussed in section 10.6.1. 

10.4.2 Hiding in plain sight: avoiding detection within a 
predator’s sensory field 

Crypsis, the phenomenon where an organism resembles a random sample 
of relevant aspects of its environment, is a highly important form of 
predator avoidance, and is found in many disparate taxa (reviewed in Cott 
1940; Norris and Lowe 1964; Edmunds 1974; Endler 1978; Caro 2005). 
Crypticity is meant to reduce detection within the sensory field of a 
predator, and includes reduction of visual, tactile, chemical, and electrical 
detection. For example, Queen parrotfish (Scarus vetula) surround 
themselves at night with a transparent mucus cocoon. This cocoon greatly 
reduces odors emanated from the fish, hiding its scent from predators. 
Effectiveness of crypsis often depends on a prey’s ability to remain still, 
move subtly, utilize appropriate background environments, and coordinate 
behaviors with appropriate changes in body coloration.  

Classic examples of crypsis include remarkable cases of background 
matching by prey organisms (e.g. flat-tailed geckos, sargassum fish, 
transparent zooplankton), but crypsis also includes more simple cases of 
blending in with the background, such as disruptive coloration, barred 
color patterns, general color matching, and countershading. These less 
spectacular forms of crypsis are extremely common and often highly 
effective. Countershading is ubiquitous among many taxa (e.g. fish, 
mammals, birds) and helps break up the body outline by exhibiting darker 
coloration dorsally and paler coloration ventrally (obscuring the ventral 
shadow formed by overhead lighting which reveals the body form) 
(Thayer 1896; Poulton 1902; Cott 1940; Kiltie 1988; Ruxton et al. 2004). 
The survival advantage of crypsis has now been demonstrated in a number 
of taxa (e.g. Cott 1940; Dice 1947; Cain and Sheppard 1954; Kettlewell 
1956; Edmunds 1974; Caro 2005), and results of early experiments on 
body color in fish and grasshoppers are presented in Fig. 2. 

Some authors consider particular types of mimicry as special cases of 
crypsis, however I distinguish crypsis from mimicry by the occurrence of 
detection. That is, cryptic organisms avoid detection by predators—
predator avoidance—whereas organisms mimicking inedible organisms or 
objects allow detection, but avoid recognition as a palatable prey item—
predator escape. Thus, mimicry is discussed below under the subject of 
predator escape. 
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10.5 Predator escape: prey fight back

Many prey traits enhance the probability of survival despite detection by a 
predator. These traits can be divided into three categories based on three 
chronological components of a predatory encounter: 1) attack deterrence, 
2) capture deterrence, and 3) consumption deterrence.  

10.5.1 Don’t even think about it: attack deterrence 

Antipredator traits that comprise attack deterrence are those that reduce the 
probability that a predator will actually attempt an attack once detection 
has occurred. These traits are meant to advertise detection or quality in an 
attempt to stimulate the predator to withdraw. That is, prey produce signals 
that they have detected the predator and/or are of poor quality (i.e. difficult 
to capture, handle, digest, or altogether inedible). 

A common method of attack deterrence is deimatic behavior. Deimatic 
behaviors alert a predator that it has been detected and are meant to 
frighten, confuse, or intimidate the predator. These behaviors often involve 
alarm calls in social animals that additionally serve to alert other prey 
individuals that a predator has been detected. In deimatic behavior, 
animals often attempt to appear strong, healthy, and large, and sometimes 
emit sounds, display bright colors (e.g. color flashes, revealing hidden 
areas of the body), eyespots, or weapons, and adopt a stereotypic posture 
(Edmunds 1974). Some animals even eject body fluids during deimatic 
behaviors, such as the blood squirting behavior of horned lizards, the 
spraying of anal gland fluids in skunks, and the fluid jets and sprays of 
many arthropods (Eisner and Meinwald 1966).  

Body fluids ejected during deimatic displays might affect a predator’s 
senses (e.g. obscure vision), cause harm (e.g. fluids that are toxic to the 
predator), or simply confuse the predator. Examples of deimatic behaviors 
include the stotting and leaping of gazelles, flashing of colors in many 
cephalopods, erection of brightly colored or eyespotted wings in stick 
insects, chelae displays in crabs, crayfish and scorpions, and the striking 
eyespot displays of the Brazilian toad Physalaemus nattereri.

Aposematism is an important means of deterring an attack, and is 
common in both plants and animals (e.g. Edmunds 1974; Bowers 1993; 
Komárek 1998; Mallet and Joron 1999; Lev-Yadun et al. 2002; Härlin and 
Härlin 2003). Aposematic organisms have dangerous attributes (e.g. 
painful weapons, foul tastes), and advertise this fact via characteristic 
colors, structures, or other signals. Bright colors (often red, yellow, or 
orange) and spines are common signals for aposematic prey.  
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For aposematism to be advantageous, predators must either sample 
some prey and learn to avoid attacking those with particular warning 
signals, or possess an evolved avoidance response for prey with particular 
warning signals—both of these possibilities have been demonstrated in 
various taxa. 

Mimicry is another way to deter an attack, and is often discussed as an 
offshoot of aposematism because many (but not all) cases of mimicry 
involve aposematic prey as the model. Müllerian mimicry describes the 
phenomenon where an unpalatable or otherwise dangerous prey species 
(the mimic) evolves a resemblance to another aposematic prey species (the 
model), benefiting from the fact that predators already avoid the model 
species (and thus, reciprocally benefiting the model species as well) 
(Müller 1879).

Examples of Müllerian mimics include several genera of wasps and 
bees, and many heliconiid butterflies. Batesian mimicry describes the same 
phenomenon, with the exception that the mimetic species is actually 
palatable (Bates 1862). Thus, Müllerian mimicry involves honest signals, 
while Batesian mimicry involves counterfeit signals. Examples of Batesian 
mimics include the beetle Clytus arietis and the hoverfly Helophilus
hybridus which both resemble Vespula wasps (Mostler 1935).

Further, mimicry need not involve resemblance to aposematic 
organisms, but can involve resemblance to any dangerous or unpalatable 
object. For example, many organisms resemble inedible objects, such as 
leaves, twigs, and bird droppings, and still others resemble predators or 
competitors of their predator—and these represent cases of Batesian 
mimicry since the prey are truly edible (Cott 1940; Edmunds 1974; 
Bowers 1993; Brakefield et al. 1992; Wiklund and Tullberg 2004). 

Prey appearing unpalatable due to their resemblance to particular 
organisms or objects avoid attack due to a recognition failure in the 
predator. That is, the predator can detect the prey, but it does not recognize 
the individual as a prey item.  

A similar case involves detection by the predator, but a failure to initiate 
a killing response, despite the possibility of initial recognition as a prey 
item. This is typically accomplished by feigning death, termed thanatosis. 
This response is widespread in arthropods, reptiles, amphibians, birds, and 
mammals; classic examples include chickens, American opossums, and the 
African ground squirrel (e.g. Ewer 1966; Robinson 1969; Edmunds 1974; 
Greene 1988; Caro 2005). 
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Fig. 2. Proportion of surviving prey individuals during experiments with predators 
exhibiting either a contrasting or matching body color with respect to its 
background environment.  (A) Differential survival during predatory encounters 
with Galapagos penguins (Spheniscus mendiculus) for pale- and dark-bodied 
Western mosquitofish (Gambusia affinis) in pale and dark background 
environments (paired t-test, one-tailed P = 0.0006, eight experimental blocks, N = 
1,046 fish; data from Sumner 1934).  (B) Differential survival during predatory 
encounters with several bird species for several species of grasshoppers 
representing four color morphs in four corresponding background environments 
(paired t-test, one-tailed P < 0.0001, 25 experimental blocks, N = 758 
grasshoppers; data from Isley 1938) 

In these cases, predators often lose interest in the prey and move away, 
or relax attention temporarily providing the prey an opportunity to retreat. 
In some cases of death feigning, prey might actually deter consumption, 
rather than attack, by stiffening the body in a position that operationally 
increases its size and thus reduces a gape-limited predator’s ability to 
consume the prey (Honma et al. 2006). 

10.5.2 Catch me if you can: capture deterrence 

Once a prey has been attacked, it can reduce the probability of successful 
capture in several ways. One of the most widespread and common forms 
of capture deterrence is rapid retreat, where the organism attempts to 
quickly flee from the oncoming attack. To rapidly displace themselves 
from the predator, prey can run, jump, swim, fly, drop, or slither away. In 
some cases, the retreat may seem quite slow to the human observer, 
however it may still be adequate to escape the relevant predator (e.g. rapid 
retreats in many snails); thus “rapid” retreat is a  relative  term in reference  
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Fig. 3. Mauthner-cell initiated rapid retreats in chordates, illustrating the 
fundamental importance of predator escape responses.  For frogs, Mauthner 
neurons produce a fast-start in tadpoles and elicit an escape jump in adults (Will 
1986; Hoff and Wassersug 2000).  Data from Hale et al. (2002) 

to the speed of the oncoming attack. A classic example of rapid retreat is 
the Mauthner-cell initiated fast-start escape mechanism present in most  
anurans and fishes (Domenici and Blake 1997; Hale et al. 2002). This 
mode of rapid locomotion is highly important in surviving predatory 
strikes (Walker et al. 2005) and is conserved in general form across a wide 
range of organisms (Fig. 3). Rapid retreat is often combined with protean 
behavior, which describes irregular, unpredictable escape patterns and 
displays serving to confuse, disorient, and evade the predator (e.g. 
Humphries and Driver 1967; Humphries and Driver 1971; Edmunds 1974; 
Driver and Humphries 1988). For example, many prey flee from predators 
in an erratic, zigzagging, or bouncing fashion, or combine multiple 
behaviors in unpredictable manners. A highly studied predator-prey 
interaction involving rapid flight and strong protean behavior is the bat-
moth system (e.g. Roeder 1962; Roeder 1965; Acharya and Fenton 1992; 
Rydell et al. 1995; Waters 2003). Efficacy of rapid retreat can also be 
enhanced by close proximity to a refuge, contrasting coloration, the 
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flashing of colors during the retreat, grouping behaviors, or ejection of 
body fluids, such as the smoke screen effect of ink ejection in many 
octopus and luminescent clouds in some squids (e.g. Edmunds 1974; 
Helfman et al. 1997; Brooke 1998; Caro 2005; Palleroni et al. 2005). 

Many prey have evolved an attack diversion to reduce the probability of 
capture during an attack. That is, many prey exhibit “predator lures” which 
divert the attack of the predator to less vulnerable objects or regions of the 
body (e.g. Edmunds 1974; Caldwell 1982; Riley and Loxdale 1988; Van 
Buskirk et al. 2003). For example, some prey exhibit defection marks 
which direct attacks to nonessential or distasteful parts of the body, such as 
the false eyes and antenna of some butterflies, the false heads of some 
snakes, and conspicuously colored tails of some lizards. Autotomy, the 
ability to break off a part of the body when attacked, is a common mode of 
attack diversion in many organisms, and is often combined with deflection 
marks centered in these expendable body regions. In these cases, predators 
are left with only a small part of the prey, while the prey survives another 
day (e.g. lizard tails, mollusc papillae, arthropod limbs). A remarkable 
example of attack diversion is found in the cuttlefish, which sometimes 
ejects a cloud of dark, viscous ink. This ink remains as a discrete unit for 
some time, resembling the cuttlefish in general size and color; predators 
often attack this cloud while the cuttlefish pales in color and flees (Holmes 
1940; Boycott 1958). 

10.5.3 Go ahead, try and eat me: consumption deterrence 

Even after a prey has been detected, attacked, and captured, there is still a 
chance for it to avoid consumption—and a number of antipredator 
adaptations represent consumption deterrence. Many organisms prevent 
consumption, and sometimes capture, through active defense, whereby 
organisms behaviorally interact with the predator using weapons evolved 
specifically for defensive purposes (e.g. claws, spines), as well as 
structures more commonly employed during food capture (e.g. teeth/jaws, 
stingers), intraspecific interactions (e.g. antlers, horns), and a range of 
other activities (e.g. limbs, hooves) (e.g. Edmunds 1974; Vermeij 1982; 
Caro 2005). In each of these cases, behavioral actions are taken by prey to 
reduce the efficiency of a predator’s capture, handling, and consumption. 
Included in this category are the electric shocks produced by some fishes 
when seized. In some cases, active defense is aided by expulsions or 
secretions of the prey that are not necessarily noxious, but rather 
mechanically interfere with consumption. For example, physid snails 
sometimes deposit egg jelly and eggs on the feeding parts of attacking 
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crayfish. This typically results in the crayfish predator dropping the snail 
to scrape clean the mouthparts and limbs, while the snail crawls away 
(DeWitt 1996; DeWitt et al. 2000). 

Numerous prey have evolved protective morphologies that reduce the 
mechanical efficiency of consumption without requiring active 
deployment. Examples of protective morphologies include unwieldy size 
and shape, and defensive armor and spines; such defenses are common in 
both plants and animals (Edmunds 1974; Zaret 1980; Jeffries and Lawton 
1984; Myers and Bazely 1991). While many of these morphologies 
enhance consumption deterrence, some may also affect attack deterrence 
(e.g. armor or spines can provide signals for aposematic prey) or capture 
deterrence (e.g. difficult to seize small or large prey). 

Another common means of reducing the post-capture probability of 
consumption is chemical defense. Many organisms possess noxious 
chemicals, sometimes associated with weapons or protective 
morphologies, which are emetic, produce bad tastes, foul odors, or painful 
experiences for the predator. Noxious chemicals can also be used in other 
modes of predator escape (i.e. attack deterrence, capture deterrence), 
however they are often employed as a method of last resort. For instance, 
many organisms have chemical defenses only released after capture or 
injury. One example of highly toxic prey are newts; some of which can 
actually be swallowed, their toxins eventually killing the predator, and 
then safely emerge from the dead predator’s mouth (Brodie 1968; Hanifin 
et al. 1999). Chemical defenses are also very common in plants (e.g. 
Karban and Baldwin 1997; Agrawal et al. 1999; Tollrian and Harvell 
1999). An alternative strategy to the inhibition of consumption is to 
actually pass safely through the predator’s gut; this phenomenon typically 
involves chemical defenses and has been described in some plants and 
invertebrates (e.g. Vinyard 1979; Aarnio and Bonsdorff 1997). 

10.5.4 Multitasking prey: all-purpose antipredator traits 

Some antipredator traits have the potential to influence all chronological 
stages of predator-prey encounters. For example, predator detection 
(vigilance) can affect survivorship in a number of ways. Many prey, but 
not all, have evolved the ability to recognize their predators (reviewed in 
Caro 2005). Predator recognition is a fundamental prerequisite of 
vigilance. That is, only prey that possess the capability of distinguishing 
between predators and nonpredators can be vigilant, or employ activities to 
see, smell, hear, or chemically or electrically detect predators. Because this 
definition of vigilance is conceptual in focus (describing actions prey take 
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to detect predators), it is broader than what is often operationally used in 
vigilance studies (e.g. when measuring vigilance it is often difficult to 
discern whether prey organisms are listening for predators while foraging). 
Many organisms utilize environments where predators occasionally occur, 
and use vigilance to increase the probability of detecting the predator 
before being detected themselves. Once a prey detects a predator, it can 
then perform a variety of subsequent actions to avoid or escape predation. 
For instance, vigilant prey often remain near a refuge so that when a 
predator is detected, they can quickly seek refuge until the predator threat 
has passed (all the while going unnoticed by the predator). One striking 
example of prey vigilance is the ability of many moths to the detect 
ultrasonic echolocation calls of bat predators—an ability that has 
apparently evolved at least six separate times and increases survival 
through early detection (e.g. Treat 1955; Roeder 1962; Hoy et al. 1989; 
Yack and Fullard 2000; Waters 2003). While vigilance can enhance 
survivorship, it can also suffer costs, such as lost time or energy that could 
have been used for other important activities (e.g. Brown 1999; Gauthier-
Clerc et al. 1998; Caro 2005). 

Many prey use protective habitats to avoid or escape predation. In these 
cases, prey utilize microhabitats that offer protection from predators in the 
form of a complex, structured setting, or an otherwise dangerous or 
impenetrable environment for the predator (e.g. shells of hermit crabs). 
Protective habitats can enhance prey survivorship in many ways. For 
instance, many aquatic organisms inhabit complex habitats such as 
macrophytic vegetation and coral reefs, and some plants and invertebrates 
live in close association with plants exhibiting high levels of antiherbivore 
defenses, such as cactus or chemically-defended seaweeds. These 
environments can hide prey, obscure prey, cause predators to halt their 
attacks, cause difficulty in negotiating prey capture, and reduce the ability 
of a predator to successfully consume and digest prey. Many animals 
temporarily utilize stressful environments that predators have difficulty 
penetrating, such as low-oxygen or high-temperature aquatic 
microhabitats. One striking example of the use of such protective habitats 
is the finding that many fish species that were presumed extinct subsequent 
to introduction of predatory Nile perch (Lates niloticus) in East African 
lakes have actually persisted in the swampy fringes of the lakes, where 
structural complexity and hypoxic conditions reduce detection and capture 
abilities of the predator (Chapman et al. 1996a; Chapman et al. 1996b; 
Chapman et al. 2002). 

Conspecific or multispecies grouping behaviors (e.g. flocking, herding, 
schooling) can affect survivorship in a number of ways, and have received 
considerable research (e.g. Hamilton 1971; Vine 1971; Morgan and Godin 
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1985; reviewed in Caro 2005). In one type of grouping behavior, prey 
associate themselves with organisms that predators avoid (i.e. the enemy 
of my enemy is my friend), thus reducing the probability of entering a 
predator’s sensory field. Many prey often aggregate with other organisms 
within a predator’s sensory field, where individual prey within the group 
reduce their probability of being detected by a predator; although the group 
itself might be more easily detected than an individual. One advantage of 
grouping that has been long discussed is the increase in vigilance 
efficiency, as groups often detect predators earlier, even though each 
individual may spend less time being vigilant when in groups (e.g. Darwin 
1871; Galton 1871; Miller 1922; Pulliam 1973; Kenward 1978; Trehorne 
and Foster 1980). Efficacy of deimatic behaviors can also sometimes be 
improved by grouping behaviors (Edmunds 1974; Humphries and Driver 
1967). Further, grouping behaviors can reduce the probability of an attack 
through a dilution effect (e.g. Hamilton 1971; Bertram 1978; Viscido et al. 
2001). By grouping, individuals reduce their probability of being attacked 
by effectively diverting attacks to other members of the group. Grouping 
can also increase the efficacy of rapid retreat (e.g. Miller 1922; Welty 
1934), as well as active defense (e.g. Edmunds 1974; Pulliam and Caraco 
1984).

10.6 Reproductive strategies: transcending predators 
through life history traits 

Most antipredator traits increase fitness amidst predation by increasing 
individual survivorship (all those described above). However, predator-
mediated selection can also favor traits that do not necessarily affect 
individual survivorship, but rather serve to increase offspring survivorship 
or individual reproductive output (Roff 2002). Increasing any of these 
three factors (i.e. individual survival, offspring survival, individual 
fecundity) can enhance fitness in a predatory environment by augmenting 
lineage proliferation. While many antipredator traits can indirectly increase 
fecundity by increasing viability—and thus, a prey’s ability to produce 
offspring—there are some traits that actually influence fecundity directly. 
In this section, I discuss traits that directly influence offspring survival 
and/or individual fecundity, and refer to these as life history traits. Traits 
influencing offspring survivorship (i.e. reproductive timing, parental care, 
offspring size, offspring number) either enhance predator avoidance or 
escape, while traits only influencing fecundity (i.e. frequency of offspring 
production, reproductive lifespan) do not. 
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10.6.1 Know when to hold ‘em, know when to fold ‘em: 
reproductive timing 

Predator-induced mortality regimes can favor particular reproductive 
schedules (e.g. early vs. late sexual maturity) that enhance individual 
fecundity (e.g. Stearns and Crandall 1981; Mangel and Clark 1988; Crowl 
and Covich 1990; Reznick et al. 1990; Roff 2002). Prey organisms can 
further enhance fitness in the face of predation by timing reproductive 
events (e.g. mating, fertilization, pregnancy, birthing) to correspond with 
time periods where offspring might enjoy relatively high survivorship. 
Such adjustments in reproductive timing can increase the offspring’s 
probability of either avoiding or escaping predators. For example, prey 
might produce offspring at a time when the level of crypsis is elevated, 
when predators exhibit low densities or are absent, when predators are 
weak or otherwise more vulnerable to prey defenses, or when 
environmental conditions reduce a predator’s prey capturing abilities. To 
date, few studies have examined shifts in reproductive timing in response 
to predator-induced mortality, although a number of examples are known 
for the effects of abiotic sources of mortality (e.g. desiccation, reduced 
energy sources due to winter; Thomson 1950; Lack 1954; Newman 1988; 
Brinkhof et al. 1993; Van Noordwijk et al. 1995; Reznick et al. 2006b). 
Reproductive timing can also influence individual viability by minimizing 
negative effects of offspring production (e.g. pregnancy, egg production) 
on capture deterrence. That is, prey are often more easily captured during 
reproductive events, and thus the timing of these events can be selected to 
avoid major individual fitness costs. 

10.6.2 Putting all your eggs in one basket and flooding the 
market: reproductive effort 

The reproductive effort of an organism describes the allocation of energy 
towards reproduction during its lifespan. This includes several important 
life history attributes that can be influenced by predator-induced mortality 
regimes. Because many prey populations experience unsaturated 
environments (i.e. few limiting resources) under high predation levels, 
they are generally believed to be r-selected (i.e. density-independent 
selection maximizing per capita population growth rate) in the classic r-K
continuum of life history theory (MacArthur 1962; MacArthur and Wilson 
1967). Thus, prey species often exhibit reproductive strategies reflecting a 
maximization of lineage growth rate. Here, I discuss how reproductive 
effort, and components thereof, might be shaped by predation. 
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To maximize lineage growth, life history theory generally predicts the 
evolution (or induction) of increased reproductive effort under high 
predation pressure (Kozlowski and Uchmanski 1987; Abrams and Rowe 
1996; Roff 2002). Parental care can be thought of as synonymous with 
reproductive effort as defined here, and includes all supply of energy 
towards reproduction. Many prey organisms employ high levels of 
parental care to enhance fecundity amidst predators. For example, prey can 
protect and provide nutrients for embryos and juveniles through nest site 
selection, nest morphology, active defense of offspring, and production of 
yolk, endosperm, and a placenta. Parental care of juveniles increases 
offspring survivorship by enhancing predator avoidance and escape (e.g. 
hiding offspring from predators, diverting predator attention from 
offspring, active defense of offspring from predators).  

While predation may generally favor increased reproductive effort, the 
manner in which this effort is allocated can vary. For instance, an 
individual can produce one large offspring or several small offspring with 
equivalent levels of reproductive effort. Let us now consider how 
predation might influence offspring number and size. 

The number of offspring per reproductive bout, or clutch size, can be 
selected to maximize lineage growth in response to predation. Such an 
optimization of clutch size can increase fecundity without altering 
offspring survival. In this scenario, offspring survivorship can be held 
constant, and the clutch size leading to the greatest lineage growth rate will 
be selected. Clutch size can also enhance predator escape ability for 
offspring. First, a low clutch size might ensure little competition among 
progeny and thus result in good health (which might often increase escape 
ability). Second, a high clutch size can provide an indirect form of attack 
deterrence by flooding the environment with offspring. In this situation, 
higher numbers of juveniles can result in a lower per capita probability of 
an attack. A striking example of this phenomenon is reproductive 
synchrony (or emergence/metamorphosis synchrony), where high clutch 
sizes may be combined with a developmental timing strategy to produce 
very high densities of juveniles, effectively reducing individual attack 
probabilities, and possibly gaining other advantages of grouping (e.g. mast 
seeding in oaks, periodical cicadas; Darling 1938; Lloyd and Dybas 1966; 
Hamilton 1971; Janzen 1981; Gochfeld 1982; Ims 1990; DeVito et al. 
1998).

Offspring size—including embryo size, egg size, birth size, emergence 
size, hatching size, seed size—can influence both predator avoidance and 
escape. Thus, many prey organisms have evolved offspring sizes that 
enhance their survival in the presence of predators (e.g. Lloyd 1987; 
Janzen et al. 2000; Moran and Emlet 2001). For example, small offspring 
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are often difficult to detect, while large offspring are often difficult to 
capture or consume. Offspring size is often correlated with offspring 
number, and thus will often evolve in a coordinated fashion (see discussion 
of trait correlations below). 

Two additional components of reproductive effort that might often 
reflect the selective influence of predation are reproductive lifespan and 
frequency of offspring production (Roff 2002). These two traits can serve 
to increase individual fecundity in the face of predation. For example, prey 
organisms might exhibit a long reproductive lifespan (i.e. early age at 
maturity, late onset of senescence) and/or frequent production of offspring. 
These strategies can maximize fecundity in an environment with high 
levels of mortality. For example, Reznick et al. (2006a) found that guppies 
(Poecilia reticulata) that evolved with predators exhibit a longer 
reproductive lifespan than guppies that evolved in the absence of major 
fish predators. Further, Hubbs (1996) demonstrated that mosquitofish 
species (genus Gambusia) inhabiting relatively low-predation 
environments exhibit longer interbrood intervals. While strategies such as 
exhibiting many, frequent bouts of reproduction can sometimes decrease 
individual survivorship (e.g. mating, pregnancy, and parental care might 
increase vulnerability to predation), these strategies may still be favored as 
they can produce a net increase in fitness. 

10.7 Predators spawn phenotypic diversity of prey: 
plasticity, divergence, and speciation 

Effects of predators on prey phenotypes can be complex. Phenotypes 
generally reflect the influence of multiple selective agents in addition to 
predators. Predation can influence phenotypic values both directly, through 
predator-mediated selection, and also indirectly through trait correlations 
and interactions with other selective agents (e.g. Gould and Lewontin 
1979; Lande and Arnold 1983; Sih 1987; Koehl 1996; Pigliucci and 
Preston 2004). Most prey exhibit numerous types of antipredator traits, and 
correlations among these and other traits are ubiquitous for several reasons 
(e.g. physiological, architectonical, functional, or developmental causes). 
Thus, effects of predators on one trait can indirectly influence other traits 
which are not under selection via predation. In natural systems, predators 
might also often affect the selective regime of prey by altering their 
interactions with other selective agents, such as altering levels of 
competition or densities of other predators. Because of this potential for 
complex networks of direct and indirect effects of environmental factors 
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(e.g. predation) on traits, researchers must employ a pluralistic approach 
assessing both direct and indirect effects of multiple environmental factors 
on multiple phenotypes to gain a thorough understanding of how predation 
influences prey evolution (DeWitt and Langerhans, 2003; Schaack and 
Chapman, 2003; Caumul and Polly, 2005; Hoverman et al. 2005). 

Many traits exhibit tradeoffs, where a given trait value increases fitness 
in one respect, but decreases fitness in another. Such tradeoffs are common 
among antipredator traits and non-defensive traits alike. For example, 
reduced activity level might reduce foraging opportunities, morphological 
and chemical defenses can be energetically costly and reduce fecundity, 
capability for high-speed movement might reduce sustained locomotion 
capabilities, grouping behaviors might lead to increased competition, 
defenses against one predator might increase vulnerability to another, and 
sexually selected ornamental traits can increase susceptibility to predation 
(e.g. Sih 1987; Lima and Dill 1990; Andersson 1994; McCollum and Van 
Buskirk 1996; Rigby and Jokela 2000; Reimchen and Nosil 2002; Vamosi 
2002; DeWitt and Langerhans 2003; Ghalambor et al. 2004; Caro 2005; 
Langerhans et al. 2005).

Predators can drive phenotypic differences between prey populations via 
several different mechanisms, and tradeoffs are not prerequisites for 
divergence. Three common ways that predators can drive divergence of 
prey are: fitness tradeoffs in prey traits across different predator regimes 
(Fig. 4A), competition for “enemy-free space” (Fig. 4B), and predators 
altering interactions of prey with other selective agents (Fig. 4C). The first 
case stems from tradeoffs, while the latter two mechanisms of divergence 
need not involve such tradeoffs. The common thread among all modes of 
divergence is that divergent selection—selection pulling trait means of 
different populations toward different adaptive peaks—is responsible for 
phenotypic differences in each case (Fig. 4D). Phenotypic differentiation 
can result from environmentally contingent (i.e. phenotypic plasticity) or 
environmentally independent phenotype production. 

10.7.1 To induce or not to induce: tradeoffs can drive predator-
induced plasticity 

Many prey organisms have evolved adaptive predator-induced phenotypic 
plasticity, where particular phenotypes are only produced under the threat 
of predation, thus avoiding fitness costs in the absence of particular 
predators. Other organisms (and sometimes other populations of the same 
species) have instead evolved fixed phenotypes, and exhibit constitutive 
defenses against predators. Whether plasticity or fixed phenotype 
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production evolves largely depends on the spatial and temporal variability 
of predation, and the ability to predict future predation levels. Plasticity 
will typically be favored in a fluctuating environment where the 
environmental state can be accurately predicted using environmental cues, 
while fixed phenotype production will typically be favored when the 
predator regime is constant and costs associated with plasticity and 
information acquisition are relatively high (e.g. Bradshaw 1965; Levins 
1968; Scheiner 1993; Gotthard and Nylin 1995; DeWitt and Langerhans 
2004).

The importance of predators in adaptive plasticity of prey has received 
considerable attention during the past two decades. Predator-induced 
defenses in animals and herbivore-induced defenses in plants are very 
common (reviewed in Havel 1987; Karban and Baldwin 1997; Chivers and 
Smith 1998; Agrawal et al. 1999; Tollrian and Harvell 1999). An obvious 
form of predator-induced plasticity is the widespread occurrence of 
predator-induced antipredator behaviors in animals (e.g. Sih 1987; Lima 
and Dill 1990; Werner and Anholt 1993). Induced morphologies, life 
histories, and chemical defenses also now appear common in many taxa 
(e.g. Dodson 1989; Karban and Baldwin 1997; Agrawal et al. 1999; 
Tollrian and Harvell 1999; Pigliucci 2001; DeWitt and Scheiner 2004). For 
example, some animals induce defensive morphologies such as unwieldy 
body shapes or spines in the presence of predators, some animals induce 
egg hatching in response to a nearby predatory attack, and many plants 
induce chemical defenses when herbivores initiate an attack. Such plastic 
responses to predation represent important and widespread evolutionary 
consequences of predation, however plasticity’s influence on 
diversification rates is largely unknown. The role of plasticity as a catalyst 
for subsequent evolutionary divergence and speciation, and its role as an 
inhibitor of extinction, is now receiving considerable attention (West-
Eberhard 1989; Schlichting and Pigliucci 1998; Pigliucci 2001; Robinson 
and Parsons 2002; Pigliucci and Murren 2003; Price et al. 2003; West-
Eberhard 2003; Schlichting 2004). 

10.7.2 Divergent selection between predator regimes: 
evolutionary divergence among prey 

Performance tradeoffs can also drive evolutionary divergence among prey 
populations, rather than favor phenotypic plasticity. Because predation is 
heterogeneously distributed across space and time, and because many traits 
exhibit tradeoffs across predatory environments, divergent selection on 
prey traits across predator regimes may be very common in nature.  
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Fig. 4. Three common ways in which predators can drive phenotypic divergence 
among prey populations (or species). Solid arrows in A-C depict selection on a 
prey trait. The sign beside each arrow indicates the direction of the optimal 
phenotype in relation to the population mean. Divergent selection arising from (A) 
divergent predator regimes, (B) competition for enemy free space within a given 
predator regime, and (C) an interaction between predation and the prey’s selective 
regime. (D) Hypothetical fitness functions resulting from each scenario depicted 
in A-C, with trait distributions for the two prey populations represented by the 
shaded areas. Arrows in D illustrate the direction selection is pulling trait means 
for each population 
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Empirical support for this proposition is growing (e.g. Reimchen 1994; 
McPeek 1995; McPeek et al. 1996; Reznick 1996; Reznick et al. 1997; 
Walker 1997; Conover and Munch 2002; Relyea 2002; Vamosi 2002; 
Vamosi and Schluter 2002; Langerhans et al. 2004; Reimchen and Nosil 
2004; Vamosi and Schluter 2004; Langerhans et al. 2005). 

One tradeoff that might be common in many organisms is the conflict 
between rapid bursts of movement (often important in capture deterrence) 
and endurance (often important for other essential activities, such as 
foraging) (e.g. Dohm et al. 1996; Reidy et al. 2000; Vanhooydonck et al. 
2001; Wilson et al. 2002; Domenici 2003; Blake 2004). Aquatic organisms 
with coupled locomotor systems (i.e. using the same structures for more 
than one swimming mode), are predicted to generally experience a tradeoff 
between fast-start swimming performance and prolonged swimming 
performance, as these tasks require opposite suites of morphological and 
physiological traits. Specifically, a shallow anterior region and a deep 
caudal region are required to produce rapid fast-starts—a very important 
escape mechanism in most fishes and anurans (see Fig. 3)—however a 
deep anterior region and a shallow caudal region are required to optimize 
prolonged swimming performance—important for acquiring resources and 
mates (e.g. Blake 1983; Webb 1984; Webb 1986; Videler 1993; Vogel 
1994; Walker 1997; Blake 2004). While the relationship between 
morphology and swimming performance can be complicated, this general 
tradeoff has been empirically confirmed when comparing across distantly 
related, morphologically disparate taxa (e.g. “accelerators” vs. “cruisers”), 
as well as within species (Reidy et al. 2000; Fig. 5). This tradeoff is 
predicted to generate divergent selection across low- and high-predation 
environments for prey populations. Recent empirical work supports this 
hypothesis, as a number of aquatic organisms have been found to exhibit 
the predicted morphological differences between populations (and  
species) inhabiting such divergent predator regimes (Walker 1997; Walker 
and Bell 2000; Langerhans and DeWitt 2004; Langerhans et al. 2004; 
Dayton et al. 2005). 

In many cases, phenotypic divergence between predator regimes 
involves a suite of traits, rather than simply one form of capture 
deterrence. For example, many studies have investigated phenotypic 
differences between predatory environments (e.g. low vs. high levels of 
predation from predatory fish) in livebearing fish, particularly the 
Trinidadian guppy. 

This work has revealed that divergent selection across predator regimes 
can drive the simultaneous divergence of a large number of traits, and 
livebearing fishes have become a model system to investigate predator-
driven evolution. 
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Fig. 5. Swimming performance tradeoff for body shape in male western 
mosquitofish (Gambusia affinis). Body shape represented by a canonical axis 
describing fish with a relatively deep anterior/head region and shallow caudal 
peduncle region at the negative end of the axis, and fish with an opposite 
morphology at the positive end. Solid line and filled symbols: fast-start swimming 
performance (P = 0.006); dashed line and open symbols: prolonged swimming 
performance (P = 0.007). Data from Langerhans et al. (2004) and RB Langerhans, 
MC Belk, and TJ DeWitt (unpublished data) 

Guppies exhibit striking differences between predator regimes in body 
color, body shape, swimming performance, many types of behaviors, and 
many life history parameters (e.g. Seghers 1974; Farr 1975; Endler 1995; 
Magurran et al. 1995; Reznick 1996; Houde 1997; Reznick et al. 1997). 
Regarding only life history characters, guppies from high-predation 
populations are known to mature earlier and at a smaller size, produce 
more and smaller offspring per litter, reproduce more often, produce 
higher reproductive allotments, and exhibit longer reproductive lifespans 
than guppies from low-predation populations (Reznick and Endler 1982; 
Reznick et al. 1996; Reznick et al. 2006). Another livebearing fish, the 
Bahamas mosquitofish (Gambusia hubbsi), also exhibits striking 
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phenotypic differences between predator regimes, including divergence in 
habitat use (Fig. 6A), body color (Fig. 6B), several life history parameters 
(Krumholz 1963; Sohn 1977; Downhower et al. 2000), male genital size 
(Langerhans et al. 2005), body shape (R.B. Langerhans unpublished data), 
and swimming performance (R.B. Langerhans unpublished data). 

Fig. 6. Divergence in (A) habitat use and (B) body color among low- and high-
predation environments in Bahamas mosquitofish (Gambusia hubbsi). Prey 
populations avoid dangerous habitat types (chi-square, P < 0.0001) and exhibit 
less conspicuous coloration (ANOVA, P < 0.0001) in high-predation populations 
(N = 55 populations; 25 low-predation, 30 high-predation).  Habitat use was easily 
assessed using underwater visual survey, and orange intensity was assessed by 
ranking individuals from 1 to 3 (1: low, 2: medium, 3: high). Data from RB 
Langerhans (unpublished data) 

Other well-studied examples of phenotypic divergence between predator 
regimes for closely related populations or species includes threespine 
sticklebacks (Gasterosteus spp.) and Enallagma damselflies. For instance, 
sticklebacks exhibit greater levels of defensive armor and schooling 
behaviors under relatively high predation intensities (e.g. Vamosi 2002; 
Doucette et al. 2004; Reimchen and Nosil 2004; Vamosi and Schluter 
2004), and Enallagma damselflies exhibit larger caudal lamellae and 
greater arginine kinase activity (enhancing rapid retreat) with predatory 
dragonflies (e.g. McPeek et al. 1996; McPeek 1997; McPeek 1999). In 
many cases, the presumed tradeoffs have been tested and the adaptive 
significance of the trait shifts have been identified. 
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10.7.3 Divergent selection within predator regimes: the search 
for enemy-free space 

Not only can divergent selection arise between alternative predator 
regimes, but predators can also drive divergent selection on prey traits 
within predator regimes (Fig. 4B). This is traditionally believed to stem 
from apparent competition—or competition for enemy-free space—which 
occurs when one species negatively impacts the density of another species, 
not through consumption of shared resources, but rather through a positive 
effect on the density of a shared predator. However, apparent 
competition—or even sympatry—is not required for predators to generate 
prey divergence within particular predator regimes (Abrams 2000). To 
date, this mode of predator-driven divergence has primarily received 
theoretical investigation (e.g. Fryer 1959; Holt 1977; Brown and Vincent 
1992; Abrams 2000; Doebeli and Dieckmann 2000; Abrams and Chen 
2002; Bowers et al. 2003), with empirical studies slow to venture into this 
field (e.g. Askew 1961; Clarke 1962; Owen 1963; Gilbert 1975; Ricklefs 
and O’Rourke 1975; Bond and Kamil 2002). 

One way that trait divergence can be favored by predator-mediated 
selection within predator regimes is if predators are most efficient at 
detecting and consuming particular prey phenotypes, and deviations from 
these phenotypes in any direction would enhance prey fitness. For 
instance, if two prey populations differ in their average phenotype, with 
one slightly less and one slightly more than that most vulnerable to 
predation, then selection will drive the populations in opposite directions 
of phenotype space (Holt 1977). That is, there are multiple ways prey can 
reduce predation risk, but intermediate trait values exhibit low fitness. This 
type of divergence can further occur even when there is only one initial 
prey population, if predators are also allowed to evolve and prey 
additionally compete for limited resources (Brown and Vincent 1992). 
However, trait divergence is not the only possible outcome, as prey 
populations might also respond to predation in parallel manners (Abrams 
2000). Although this scenario is typically discussed in a sympatric 
framework, trait divergence can actually occur via such a mechanism 
among either sympatric or allopatric prey populations. The particular 
adaptive peak a prey population might traverse can also be influenced by 
genetic drift or genetic constraints; in these cases, divergence can result 
from an interaction between predator-mediated natural selection and other 
evolutionary factors. 

Schluter (2000) reviewed possible examples where divergent selection 
within predator regimes has resulted in prey divergence; examples include 
diversification of aspect diversity in moths (Ricklefs and O’Rourke 1975), 
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leaf shape in passion flower vine species (Passiflora spp.) attacked by egg-
laying Heliconius butterflies (Gilbert 1975), and gall shapes in oak gall 
wasps attacked by parasitoids (Askew 1961). A potentially common 
scenario in nature that might produce divergent selection within predator 
regimes is when multiple types of background environments exist, and 
selection favors different means of crypticity in prey to avoid detection 
(e.g. Bond and Kamil 2002; Nosil 2004; Bond and Kamil 2006). 
Importantly, such divergent selection within predator regimes (i.e. 
selection caused by the same predatory agent) need not result from 
apparent competition, as predator density can remain constant and 
selection coefficients can also be unaffected by predator density. 

10.7.4 Divergent selection involving other selective agent(s): 
predation as a context shift 

Rather than acting as a direct selective force, predation can alter the 
environmental context for prey interactions, thus changing their selective 
regime (Fig. 4C; Buckling and Rainey 2002; Doucette et al. 2004; Eklöv 
and Svanbäck 2006; Steets et al. 2006). This arises when predators cause 
changes in prey traits or densities, or attributes of other community 
members, that result in changes in selection (magnitude and/or nature) 
experienced by prey. For example, predators often cause behavioral shifts 
in prey (Kotler and Brown 1988; Lima and Dill 1990; Peacor and Werner 
2001; Lingle 2002; Fig. 6A) which might alter a prey’s selective 
environment, possibly strengthening divergent selection already in place. 
Interestingly, predators need not even consume any individuals to drive 
phenotypic divergence in prey under this scenario. Such non-lethal effects 
of predators represent an important, growing field of study in ecology (see 
chapter 17), however, this topic is only now beginning to receive 
considerable attention by evolutionists. So far, it is unknown whether 
predators might weaken divergent selection among prey populations as 
often as they strengthen it. 

One type of prey interaction that predation might often influence is 
resource competition. Predation appears to play an important role in the 
divergence of benthic and limnetic species pairs of threespine stickleback 
in British Columbia (e.g. Vamosi 2002; Vamosi and Schluter 2004). In a 
pond experiment, divergent selection among benthic and limnetic 
stickleback was strengthened under high predation pressure from aquatic 
insects and cutthroat trout (Oncorhynchus clarkii), even though the level of 
resource competition actually decreased (Rundle et al. 2003). In this case, 
it seems that predators increased resource partitioning among divergent 
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prey phenotypes, possibly by inducing changes in habitat use or foraging 
behavior, and caused competition to decline at a greater rate with 
phenotypic distance compared to an environment lacking predators. 
Interestingly, benthic and limnetic pairs of stickleback have apparently 
evolved only in lakes with cutthroat trout and no other fish species present. 
Stickleback have not evolved such phenotypic divergence within any of 16 
nearby candidate lakes, which have an average of approximately three 
other fish species, and all but one have more potential predators and 
competitors than cutthroat trout (Vamosi 2003). 

10.7.5 Predation as a driver of speciation: eating individuals, 
spitting out species 

Until now, we have only discussed predation’s influence on phenotype 
divergence within lineages, however predation can also affect the splitting 
of lineages (i.e. speciation), the elimination of lineages (i.e. extinction), 
and overall diversification rates (speciation minus extinction). Both 
theoretical and empirical work strongly confirm that divergent selection 
can lead to speciation (i.e. reproductive isolation between populations) as a 
byproduct of ecological adaptation (e.g. Mayr 1942; Dobzhansky 1951; 
Rice and Hostert 1993; Funk 1998; Rundle et al. 2000; Schluter 2001; 
Coyne and Orr 2004; Nosil et al. 2005; Rundle and Nosil 2005; Funk et al. 
2006). For example, mate choice might involve traits under divergent 
selection, or selection against hybrids might favor assortative mating. 
Further, predator-mediated selection against migrants from alternative 
predator regimes can result in reproductive isolation. Thus, any of the 
mechanisms described above could result in reproductive isolation 
between divergent prey populations. But, has predation actually been an 
important driver of speciation? Given the apparent ubiquity of predation’s 
influence on phenotype divergence, it seems reasonable to expect that it 
might often contribute to the process of speciation. Unfortunately, 
investigation into predation’s role in the formation of species has received 
little attention to date (see Fig. 1). However, recent work is beginning to 
shed some light onto this question (e.g. McPeek and Wellborn 1998; Stoks 
et al. 2005; Vamosi 2005). 

There is now accumulating evidence suggesting predation is a 
significant driver of speciation in Heliconius butterflies (e.g. McMillan et 
al. 1997; Mallet et al. 1998; Jiggins et al. 2001; Naisbit et al. 2003; Jiggins 
et al. 2004). Further, predation is strongly implicated in divergence and 
reproductive isolation between color pattern morphs of Timema walking-
stick insects (e.g. Sandoval 1994; Crespi and Sandoval 2000; Nosil et al. 



Evolutionary consequences of predation      205 

2002; Nosil et al. 2003; Nosil 2004; Nosil and Crespi 2006). In this case, 
predator-mediated divergent selection (by avian predators) across 
background environments (host plants) has apparently resulted in cryptic 
color pattern divergence and partial reproductive isolation between 
diverging prey populations. Ongoing work is also uncovering the 
importance of predation on reproductive isolation among populations of 
livebearing fish species inhabiting divergent predator regimes (RB 
Langerhans unpublished data). 

Additionally, several general models of speciation might involve 
predation, although they may not typically focus on predation per se. For 
example, habitat selection (e.g. host-plant preference, oviposition site 
selection) can often be influenced by predator regime, and facilitate 
speciation by enhancing assortative mating. Further, many models of 
speciation involving frequency-dependent selection, or competition for 
resources, can be interpreted as consequences of predator-prey interactions 
(e.g. apparent competition). 

10.8 Conclusions and future directions 

Predation’s general importance in the evolution of prey phenotypes is 
without question. In this chapter, I described a framework for 
understanding antipredator traits based on the manner in which traits 
influence prey fitness and the chronological sequence of predatory 
encounters. The framework illustrates the ubiquity of predation’s influence 
on prey traits. However, many questions remain concerning the detailed 
nature of predation’s role in generating the diversity of phenotypes and 
species we see today. This chapter highlights the need for further 
investigation into how reproductive strategies might reflect antipredator 
adaptations, and how predation might influence trait divergence and 
speciation. An important component of future research should involve a 
pluralistic approach to studies of phenotype evolution, where multiple 
selective agents and multiple phenotypes are examined simultaneously. 
While research into the significance of predation in producing evolutionary 
divergence of prey species experienced a slow start through most of the 
twentieth century, recent and ongoing research suggests the field is now 
very rapidly growing. Our understanding of the varied ways that predators 
might influence the evolution of prey phenotypes and reproductive 
isolation between prey populations should be greatly improved by the end 
of the current century. 
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